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Abstract — The present work is aimed at the study of 

thermoelastic interactions in a semi-infinite medium in 

the context of the Green and Naghdi theory of type II. 

The governing equations are expressed in Laplace 

transform domain and solved in the domain by 

analytical method and finite element method. The 

solutions of the problem in the physical domain are 

obtained by using a numerical method for the inversion 

of the Laplace transforms based on Stehfest’s method. 

Numerical results for the temperature distribution, 

displacement and thermal stress are represented 

graphically.  

 

 
Keywords: Laplace transform, Finite element method, Green and 

Naghdi theory. 

I. INTRODUCTION 

or the last three decades, the generalized theories of 

thermoelasticity, which admit the finite speed of thermal 

signal, have been the center of interest of active research. 

Cylindrical shell structure is a common structure type that 

can be used in applications involving aerospace, submarine 

structures, nuclear reactors as well as chemical pipes. When 
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the structures are exposed to a temperature field, the 

thermal stresses are then induced. The research for 

thermoelastic problems, especially for dynamic 

Thermoelastic problems, is of increasing interest in 

engineering science and many works have been done. The 

generalized theories of thermoelasticity remove the paradox 

of infinite speed of heat propagation inherent in the 

conventional coupled dynamical theory of thermoelasticity 

introduced by Biot [1]. The theory of couple 

thermoelasticity was extended by Lord and Shulman [2] and 

Green and Lindsay [3] by including the thermal relaxation 

time in constitutive relations. The theory was extended for 

anisotropic body by Dhaliwal and Sherief [4]. During the 

last three decades a number of investigations [5-8] have 

been carried out using the aforesaid theories of generalized 

thermoelasticity. Note that in most of the earlier studies, 

mechanical or thermal loading on the bounding surface was 

considered to be in the form of a shock. Youssef [9-10] has 

formulated a problem of an infinite body having a 

cylindrical cavity using the Laplace transform technique and 

the same has been solved numerically based on the Fourier 

series expansion.  The exact solution of the generalized 

thermoelasticity theory governing equations for a coupled 

and non-linear/linear exists only for very special and simple 

initial and boundary problem. In view of calculating general 

problems, a numerical solution technique is to be used. For 

this reason the finite element method is chosen. The method 
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of weighted residuals offers us the formulation of the finite 

element equations and we obtain a best approximated 

solutions to linear and nonlinear ordinary and partial 

differential equations. Applying this method basically 

involves three steps. The first step is to assume the general 

behavior of the unknown field variables in such a way as 

satisfy the given differential equations. Substitution of these 

approximating functions into the differential equations and 

boundary conditions result in some errors, called the 

residual. This residual has to vanish in an average sense 

over the solution domain. The second step is the time 

integration. The time derivatives of the unknown variables 

have to be determined by former results. The third step is to 

solve the equations resulting from the first and the second 

step by the solving algorithm of the finite element program. 

Abbas and Abbas et. al [11-17] applied the finite element 

method in different problems.  

    The present investigation is devoted to study the 

thermoelastic interactions in a semi-infinite medium without 

energy dissipation by analytical method (Exact solution) 

and numerical method (finite element method). Numerical 

results for the temperature distribution, displacement and 

thermal stress are represented graphically. Finally, the 

accuracy of the finite element formulation was validated by 

comparing the analytical and numerical solutions for the 

field quantities. 

 

II. BASIC EQUATION AND FORMULATION 

 

   In the context of the Green and Naghdi-theory of type II, 

the field equations for linear equations in homogenous and 

isotropic thermoelastic continuum, the generalized field 

equations can be presented in a unified form as [10] 
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The constitutive equations are given by 

( ) ( ), , , 0 .ij i j ij i j j i iju u u T Tτ λ δ µ γ δ= + + − −         (3) 

Where λ  and µ  are Lame's constants, ρ  is the density of 

medium, 
e

c  is specific heat at constant strain, t  is the time, 

T  is the temperature, 0T  is the reference temperature, 
*
ijK  

are the material constant characteristic of the theory, 
ij

δ  is 

the kronecker symbol, 
ij

τ  are the components of stress 

tensor, 
i

u  are the components of displacement vector, 
i

F  

are the body force vector, (3 2 ) ,
t

γ λ µ α= +  
t

α  is the 

coefficient of linear thermal expansion. It assumed that the 

state of the medium depends only on x  and the time 

variable t . It is assumed that there are no body forces and 

heat sources in the medium and that the plane 0x = is 

taken to be traction free. Thus the field equations (1)-(3) in 

a one-dimensional case can be put as 
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For convenience, we shall use the following non-

dimensional variables: 
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c
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ρ

+
= . Into equations (4)-(6), one may 

obtain (after dropping the superscript ° for convenience) 
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where 

2 2
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β ε ε

ρ
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The non-dimensional forms of the initial and boundary 

condition are: 

( )
( )

( )
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∂ ∂
= = = =
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(10) 

( ) ( ) 10, 0, 0, ( ),xx t T t T H tτ = =                                (11) 

where ( )H t  denotes the Heaviside unit step function. 

 

III. BASIC EQUATIONS IN THE LAPLACE 

TRANSFORM DOMAIN 

 

     Applying the Laplace transform for equations (7)-(9) 

define by the formula 

[ ]
0

st
f ( s ) L f ( t ) f ( t )e dt.

∞
−= = ∫                              (12) 

Hence, we obtain the following system of differential 

equations 

2
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with 
2 2 2

1 2 3 1 4 2f s , f , f s  and f s ,β ε ε= = = =  and s 

denotes the Laplace transform parameter. All the state 

functions initially are equal to zero, and the boundary 

conditions (11) become   
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s T s

s
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IV. EXACT SOLUTION 

 

    Eliminating T from the equations (13) and (14) we get 

( )
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The solutions of Equation (17) bounded at infinity can be 

written in the form: 

1 2

1 2

m x m x
u A e A e ,

− −= +                                                 (18) 

where 1A  and 2A  are parameters depending on s to be 

determined from the boundary conditions, 1m and 2m are 

the roots with positive real parts of the characteristic 

equation  

( )4 2

1 3 2 4 1 3 0m f f f f m f f ,− + + + =                        (19) 

1m and 2m are given by 
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From equation (18) into equations (13) and (14), the 

expression for temperature can be written in the form 
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Substituting from equations (19) and (20) into equation 

(15), we obtain 
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From the boundary conditions (16), it follows that 
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V. NUMERICAL SOLUTION 

 

In order to investigate the thermoelastic interactions in a 

semi-infinite medium without energy dissipation, the finite 

element method (FEM) [18] is adopted due to its flexibility 

in modeling layered structures and its capability in 

obtaining full field numerical solution. The governing 

equations (13) and (14) are coupled with boundary 

conditions (16). The numerical values of the dependent 

variables like displacement u  and the temperature T  are 

obtained at the interesting points which are called degrees 

of freedom. The weak formulations of the non-dimensional 

governing equations are derived. The set of independent test 

functions to consist of the displacement uδ and the 

temperature Tδ is prescribed. The governing equations are 

multiplied by independent weighting functions and then are 

integrated over the spatial domain with the boundary. 

Applying integration by parts and making use of the 

divergence theorem reduce the order of the spatial 

derivatives and allows for the application of the boundary 

conditions. The same shape functions are defined piecewise 

on the elements. Three nodes of quadrilateral elements are 

used. The shape function is usually denoted by the letter N 

and is usually the coefficient that appears in the 

interpolation polynomial. A shape function is written for 

each individual node of a finite element and has the 

property that its magnitude is 1 at that node and 0 for all 

other nodes in that element. We assume that the master 

element has its local coordinates in the range [ 1,1]− . In 

our case, the one-dimensional quadratic elements are used, 

which given by: Linear shape functions 

( ) ( )1 2

1 1
1 , 1 ,

2 2
N Nξ ξ= − = +  

 Quadratic shape functions 

 ( ) ( )2 2 2

1 2 3

1 1
, 1 , ,

2 2
N N Nξ ξ ξ ξ ξ= − = − = +  

VI. NUMERICAL INVERSION OF THE LAPLACE 

TRANSFORMS 

 

For the final solution of temperature, displacement and 

stress distributions in the time domain, we adopt a 

numerical inversion method based on the Stehfest [19]. In 

this method, the inverse f ( t ) of the Laplace transform 

f ( s )  is approximated by the relation 

1

2 2n
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∑                                      (26) 

Where 
i

V is given by the following equation: 
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The parameter n is the number of terms used in the 

summation in equation (26) and should be optimized by 

trial and error. Increasing n increases the accuracy of the 

result up to a point, and then the accuracy declines because 

of increasing round-off errors. An optimal choice of 

10 14n≤ ≤ has been reported by Lee et al. for some 

problem of their interest [20]. 

 

VII. NUMERICAL RESULTS AND DISCUSSION 

 

      In order to illustrate the problem, the copper material 

was chosen for purposes of numerical evaluations. The 

physical data which given as [10] 

10 1 2

10 1 2

7.76 10 ( )( ) ( ) ,

3.86 10 ( )( ) ( ) ,

kg m s

kg m s

λ

µ

− −

− −

= ×

= ×
 

( )

2 1 3

2 2 1 2

0 1

3.68 10 ( )( )( ) ( ) ,

3.831 10 ( ) ( ) ( ) ,

293 , 1,

e

K kg m K s

c m K s

T K T

− −

− −

= ×

= ×

= =

 

3 3

6 1

8.954 10 ( )( ) ,

17.8 10 ( ) .
t

x kg m

K

ρ

α

−

− −

=

= ×
 



 
 Ibrahim A. Abbas                                                JOURNAL OF PHYSICS   VOL. 2 NO. 1 Febraury (2013) PP. 4 - 9  

 

 

Copyright 1996-2012 Researchpub.org. All rights Reserved. 8 

The results for displacement, temperature and stress has 

been carried out by taking 1 1T = . Figures 1, 2 and 3 

exhibit the variation of the displacement, temperature and 

stress with space x for different values of time 

( 0 1 0 2 0 3 0 4t . , . , . , .= ). It is obvious from figure 1 that the 

displacement is negative at 0x =  where its magnitude is 

maximum. The displacement increases from the negative 

value to a positive value. In the positive values, the 

displacement has a peak value that depends on the values of 

the time. It is obvious from figure 2 that the temperature 

decreases with the increase of the space but they increase 

when increasing the time. It is obvious from figure 3 which 

gives the stress variation at different instants of time with 

the space. Its magnitude increases from zero to a maximum 

value after that decreases rapidly as x increases.  

         Finally, figures 1-3 illustrates the solution obtained 

numerically by finite element method (          ) overlaid onto 

the solution obtained analytically (           ). The accuracy of 

the finite element formulation was validated by comparing 

the analytical and numerical solutions for the field 

quantities.  
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Figure 1. Variation of displacement  
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Figure 2. Variation of temperature 
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Figure 3. Variation of stress  
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